Jump to content

Portal:Mathematics

Page semi-protected
From Wikipedia, the free encyclopedia

The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

illustration of a closed loop (a circle) and progressively more knotted loops
illustration of a closed loop (a circle) and progressively more knotted loops
This is a chart of all prime knots having seven or fewer crossings (not including mirror images) along with the unknot (or "trivial knot"), a closed loop that is not a prime knot. The knots are labeled with Alexander-Briggs notation. Many of these knots have special names, including the trefoil knot (31) and figure-eight knot (41). Knot theory is the study of knots viewed as different possible embeddings of a 1-sphere (a circle) in three-dimensional Euclidean space (R3). These mathematical objects are inspired by real-world knots, such as knotted ropes or shoelaces, but don't have any free ends and so cannot be untied. (Two other closely related mathematical objects are braids, which can have loose ends, and links, in which two or more knots may be intertwined.) One way of distinguishing one knot from another is by the number of times its two-dimensional depiction crosses itself, leading to the numbering shown in the diagram above. The prime knots play a role very similar to prime numbers in number theory; in particular, any given (non-trivial) knot can be uniquely expressed as a "sum" of prime knots (a series of prime knots spliced together) or is itself prime. Early knot theory enjoyed a brief period of popularity among physicists in the late 19th century after William Thomson suggested that atoms are knots in the luminiferous aether. This led to the first serious attempts to catalog all possible knots (which, along with links, now number in the billions). In the early 20th century, knot theory was recognized as a subdiscipline within geometric topology. Scientific interest was resurrected in the latter half of the 20th century by the need to understand knotting problems in organic chemistry, including the behavior of DNA, and the recognition of connections between knot theory and quantum field theory.

Good articles – load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know (auto-generated)load new batch

  • ... that after Florida schools banned 54 mathematics books, Chaz Stevens petitioned that they also ban the Bible?
  • ... that Ukrainian baritone Danylo Matviienko, who holds a master's degree in mathematics, appeared as Demetrius in Britten's opera A Midsummer Night's Dream at the Oper Frankfurt?
  • ... that owner Matthew Benham influenced both Brentford FC in the UK and FC Midtjylland in Denmark to use mathematical modelling to recruit undervalued football players?
  • ... that the word algebra is derived from an Arabic term for the surgical treatment of bonesetting?
  • ... that circle packings in the form of a Doyle spiral were used to model plant growth long before their mathematical investigation by Doyle?
  • ... that despite published scholarship to the contrary, Andrew Planta neither received a doctorate nor taught mathematics at Erlangen?
  • ... that the discovery of Descartes' theorem in geometry came from a too-difficult mathematics problem posed to a princess?
  • ... that Fathimath Dheema Ali is the first Olympic qualifier from the Maldives?

More did you know – view different entries

Did you know...
Did you know...
  • ...the Piphilology record (memorizing digits of Pi) is 70000 as of Mar 2015?
  • ...that people are significantly slower to identify the parity of zero than other whole numbers, regardless of age, language spoken, or whether the symbol or word for zero is used?
  • ...that Auction theory was successfully used in 1994 to sell FCC airwave spectrum, in a financial application of game theory?
  • ...properties of Pascal's triangle have application in many fields of mathematics including combinatorics, algebra, calculus and geometry?
  • ...work in artificial intelligence makes use of swarm intelligence, which has foundations in the behavioral examples found in nature of ants, birds, bees, and fish among others?
  • ...that statistical properties dictated by Benford's Law are used in auditing of financial accounts as one means of detecting fraud?
  • ...that modular arithmetic has application in at least ten different fields of study, including the arts, computer science, and chemistry in addition to mathematics?
Showing 7 items out of 75

Selected article – show another


A labeled graph on 6 vertices and 7 edges
Image credit: User:Booyabazooka

Informally speaking, a graph is a set of objects called points, nodes, or vertices connected by links called lines or edges. In a proper graph, which is by default undirected, a line from point A to point B is considered to be the same thing as a line from point B to point A. In a digraph, short for directed graph, the two directions are counted as being distinct arcs or directed edges. Typically, a graph is depicted in diagrammatic form as a set of dots (for the points, vertices, or nodes), joined by curves (for the lines or edges). Graphs have applications in both mathematics and computer science, and form the basic object of study in graph theory.

Applications of graph theory are generally concerned with labeled graphs and various specializations of these. Many problems of practical interest can be represented by graphs. The link structure of a website could be represented by a directed graph: the vertices are the web pages available at the website and a directed edge from page A to page B exists if and only if A contains a link to B. A graph structure can be extended by assigning a weight to each edge of the graph. Graphs with weights, or weighted graphs, are used to represent structures in which pairwise connections have some numerical values. For example if a graph represents a road network, the weights could represent the length of each road. A digraph with weighted edges in the context of graph theory is called a network. Networks have many uses in the practical side of graph theory, network analysis (for example, to model and analyze traffic networks). (Full article...)

View all selected articles

Subcategories


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics


Algebra Analysis Geometry and topology Applied mathematics
Source

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

WikiProjects

WikiProjects The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

More portals